
14

▪ Commute to work.

▪ Start break.

▪ Start work, also indicates end of a break if the last reported status was start break.

▪ End work, also indicates end of a break if last reported status was start break.

Working time reporting across vehicles or devices

Generally, when reporting working time, the start and the end are performed on the same device,

but if drivers and workers use various vehicles and thus devices, the following rules should be

considered:

▪ If a driver moves between PRO navigation devices or Remote LINK devices working times are

driver-oriented.

▪ If a driver moves between GO navigation devices, working times are vehicle-oriented.

▪ Working sessions have to be closed, with End work, before pairing any device with a different

device.

▪ Closing working sessions on a different device than the one with which you have started the

working session is only possible, if you use Remote LINK (page 10) with an ID Key or PRO

navigation devices.

Vehicle maintenance

Maintenance schedule

A maintenance schedule describes a maintenance task that has to be carried out on a vehicle. It

defines when the task is scheduled and whether it has to be carried out once at a certain date or

vehicle mileage, or if it needs to start at a certain date or vehicle mileage and be repeated at

regular intervals.

In accordance with the maintenance schedule, WEBFLEET creates a maintenance task when the

task is due. A reminder can also be issued a certain time or distance before the task is due, giving

advanced notice of the maintenance task.

Maintenance task

A maintenance task for a vehicle is created from the respective maintenance schedule. The task

appears in WEBFLEET when it is due or the task's reminder is issued.

15

This programming guide is an introduction to using the WEBFLEET.connect interface, how to

access the service and how to interpret the output that is returned.

In order to access the WEBFLEET.connect service you need a WEBFLEET account that has

WEBFLEET.connect enabled. Otherwise you will not be able to test the integration for your

application.

Please talk to your TomTom Telematics sales contact if you do not have access to a

WEBFLEET.connect-enabled account.

Programming Guide

16

Introduction to WEBFLEET.connect

WEBFLEET.connect is an API that allows you to access the WEBFLEET service through a

web-enabled application. These are the primary features accessible through WEBFLEET.connect:

▪ Reports — Retrieve data that correspond to the information contained in the reports

generated within WEBFLEET

▪ Messaging — Send text to mobile units and retrieve incoming messages.

See Message queues (page 35) and Orders (page 93).

▪ Addresses — Insert, update and delete addresses and address groups as well as relations

between addresses and address groups.

See Addresses (page 151).

▪ Orders — Insert, send, update and delete orders and retrieve order status information.

See Orders (page 93).

▪ Drivers — Insert, update and delete drivers and retrieve driver status information.

See Drivers (page 130).

Note: As WEBFLEET.connect impersonates as the user that is provided as part of the service

request authentication, access restrictions set up within WEBFLEET apply. This affects all

elements of the WEBFLEET.connect interface. For instance, addresses can only be updated if

the user has the respective access right to do so (for example: "Edit access" for "All addresses").

17

Preparing for WEBFLEET.connect

WEBFLEET.connect can be made available to every customer with a valid WEBFLEET account.

There should be at least one active object to make full use of the functionality offered by

WEBFLEET.connect.

Access to WEBFLEET.connect with API Key

To enable API access for your application, obtain an API key by doing the following:

For .connect partners

If you are a .connect partner, you will receive your API key during your partner application

process. To request more API keys, complete the online request form on

https://uk.support.telematics.tomtom.com/app/ask (Request API Keys -

https://uk.support.telematics.tomtom.com/app/ask).

▪ In the Refine search by product model drop-down menu select Integration, then select the

desired API.

▪ In the Refine search by category drop-down menu select API key request.

For customers

If you are a customer and would like to request an API key, complete the online request form on

https://uk.support.telematics.tomtom.com/app/ask (Request API Keys -

https://uk.support.telematics.tomtom.com/app/ask).

▪ In the Refine search by product model drop-down menu select Integration, then select the

desired API.

▪ In the Refine search by category drop-down menu select API key request.

Checking requirements

Geographic coordinates

Some functions require geographic coordinates such as longitude and latitude. This includes

inserts and updates of addresses and sending orders.

Make sure that you are able to provide valid coordinates, otherwise you won't be able to fully

leverage all functionality that WEBFLEET.connect offers. Geographic coordinates used by

WEBFLEET always refer to the WGS84 (see WGS84 -

https://en.wikipedia.org/wiki/World_Geodetic_System) coordinate system and have different

representations.

Creating a user and assigning rights

In order to access WEBFLEET.connect, you must first create a user within your WEBFLEET

account and give this user the right to use WEBFLEET.connect.

This procedure is outlined below:

1. Log in to WEBFLEET as account administrator.

18

2. Click More in the Main Menu and select Users from the list.

3. Click New.

A pop-up window opens.

4. Fill in the required details.

5. Select a security profile under Profile settings.

A good starting point is to use the profile Standard.

6. Click Save to save your changes.

7. Under Profile settings click the Advanced button to change user rights.

A pop-up window opens.

19

8. In the External tab select Access to WEBFLEET.connect.

9. Click Ok to save your changes.

10. If you want to manage orders select the System tab and select Full access orders under

Orders.

11. Click Ok to save your changes.

20

12. If you want to import addresses select the Addresses tab and select Admin access from the

list for Access to all addresses with right level.

13. Click Ok to save your changes.

21

Making requests to WEBFLEET.connect

Making HTTP requests

This section explains how to use HTTP (see RFC 2616 - Hypertext Transfer Protocol -- HTTP1.1 -

http://www.ietf.org/rfc/rfc2616.txt) to issue requests to WEBFLEET.connect.

Important: Only HTTPS requests are accepted. Requests using unencrpyted HTTP are rejected.

WEBFLEET.connect generally uses HTTP GET requests as the underlying transport mechanism for

requests (POST is supported for few actions only, see below). All requests are made using specific

URLs (see RFC 1738 - Uniform Resource Locators (URL) - http://www.ietf.org/rfc/rfc1738.txt),

passing parameter names and values as URL parameters. Responses are returned as

character-separated values (CSV).You can experiment with WEBFLEET.connect-specific HTTPS

requests by entering the request URL into the browser's address bar and submitting the request.

WEBFLEET.connect uses the standardized transport protocol HTTPS 1.1 for which compliance

with IETF RFC 2616 (see RFC 2616 - Hypertext Transfer Protocol -- HTTP1.1 -

http://www.ietf.org/rfc/rfc2616.txt) is very important. It includes proper evaluation and handling of

all HTTP response header values, e.g. character set, content and transfer encoding including

chunked transfer encoding.

The sequence of incoming messages may differ from the sequence of messages sent from the

device. Use their timestamp to restore the sequence, if the sequence is significant for the

application.

We highly recommend to use ISO8601 (see ISO 8601 - https://en.wikipedia.org/wiki/ISO_8601) for

all date and time values even if its use is optional with some functions. Date and time values carry

timezone information where appropriate.

Character sets and date/time values need translation to local configurations, for example. UTF-8 to

ISO-8859-10, UTC to CET. We do not guarantee the character encoding (currently: UTF-8) and

timezone (currently: UTC for queue service, else time zone of the account) of the web service

response, as all information to properly convert this to local requirements is provided as per the

above mentioned standards.

For details about time zones when using ISO8601 in CSV read General parameters (page 29).

Do not use HTTP authentication, neither Basic nor Digest. HTTP authentication is not required by

the service as username and password are included in the URL of the requests.

Do not pass parameters with an empty value in a request, if you do not explicitely want to delete

the parameter's value.

Note: If the format of the HTTP request is not valid you will get a corresponding error.

The base URL

Every HTTP request to WEBFLEET.connect begins with constant elements for

▪ host:

csv.telematics.tomtom.com

▪ path:

extern

22

Therefore, the base URL with the https scheme used is:

https://csv.telematics.tomtom.com/extern (https://csv.telematics.tomtom.com/extern)

Handling the response

In case of an error, an error message is returned as plain text. The error message has the

following layout:

id, description

id is a numeric value and description provides a reason text. The message is either in the

language defined by the lang parameter or in English if no localised translation is available.

All methods that return data, provide the data as quoted character-separated values (CSV) with

one record per line. Those methods' names typically contain verbs indicating data retrieval such as

show… or pop… The Quoting character is ' " ' - if this character is part of the data, it is quoted with

", appearing as "".The ordering of result columns might not always match that of the

documentation and is subject to change without notice. It is therefore advisable to use the column

names returned in the first response line to identify the data columns by their name. If there is no

data to return, an error message is returned, for example:

63,document is empty

All methods that transmit data, e.g. all send… methods, return nothing on successful completion,

that is the response is empty.

Error codes and descriptions are also returned in two HTTP response header fields:

▪ X-WEBFLEET-Errorcode: <Error code>

▪ X-WEBFLEET-Errormessage: <Error message>

If there is no error, the header fields are omitted.

Making HTTP POST requests

In addition to GET you can use HTTP POST for the following actions only:

▪ sendDestinationOrderExtern (page 94)

▪ insertDestinationOrderExtern (page 105)

▪ updateDestinationOrderExtern (page 101)

WEBFLEET.connect accepts POST requests with Content-Type

"application/x-www-form-urlencoded". The parameters and values are transferred in the body of

the request. The parameter name is separated from the value by ' = ' and name/value pairs are

separated from each other by ' & '. Special characters have to be encoded like query strings in

URLs, see RFC 1738 - Uniform Resource Locators (URL) (see RFC 1738 - Uniform Resource

Locators (URL) - http://www.ietf.org/rfc/rfc1738.txt).

The default character set is ISO-8859-1. To use UFT-8, you have to specify the character set in the

HTTP header "Content-Type".

Example:

Content-Type: application/x-www-form-urlencoded;charset=utf-8

Code sample 3-1: Example of a complete POST request

POST/extern HTTP/1.1

23

Host:csv.telematics.tomtom.com

Connection:keep-alive

Content-Type:application/x-www-form-urlencoded;charset=UTF-8

Content-Length:177

lang=en&account=wfcdevaccount&username=wfcuser&password=yourpwd&apikey=y

ourapikey&action=sendDestinationOrder&objectno=0094&orderid=itn32&ordert

ext=Clean%20streets&longitude=12399200&latitude=51364460&wp=51363230,123

92520,Hamburger%20Str.%2012,1,1

Using JSON

To use JSON, add the additional parameter outputformat=json to the request URL. This will return

JSON instead of CSV. All other parameters and functionality stays the same.

The field names in the JSON output are identical to the column names in the CSV format. The

returned JSON is an array with a flat representation of the data, which is not grouped nor

structured. But there is one exception from the "flat rule": The surplus_data member in the result

of popQueueMessagesExtern (page 37) is structured JSON.

Empty data is omitted in the result – no "null" members. JSON data types, such as string, number

and boolean are used where applicable. If there is no data to return, an empty JSON array is

returned.

The HTTP Content-Type is "application/json;charset=UTF-8".

Getting started with HTTP requests

For making HTTP requests, you only need a web browser.

Preconditions

▪ Up-to-date web browser, for example Chrome or Firefox.

▪ Valid API key and credentials.

Making an HTTP request with a browser

1. Simply type (or copy & paste) the full URL into the web browser address bar.

Here is a simple example URL that will geocode the specified location:

https://csv.telematics.tomtom.com/extern?lang=en&account=xxx&username=x

xx&password=xxx&apikey=xxx&action=geocodeAddress&outputformat=json&free

text=Leipzig

Note: Please insert your credentials and API key before submitting.

2. Press Enter to submit the request.

Tip: The output format has been set to JSON. We recommend using the JSON format as

output for these kinds of tests as this usually can be displayed inside the web browser as

well.

24

The result output displayed in a web browser:

HTTP request encoding

Every HTTP/HTTPS request must be a valid URL. That means that only ASCII

https://en.wikipedia.org/wiki/ASCII characters are valid characters inside the URL and every other

character, such as the German 'ß' character, or a special signs, such as the '@' sign, must be

properly encoded inside the URL. There are two different types of encoding available depending

on what kind of characters or special signs are needed.

Percent encoding

This is the basic version of character encoding. It contains only some special characters like for

instance the 'ß' character (encoded as %DF) or the '@' sign (encoded as %40).

Find below an example that uses 'Sußanne@work' as WEBFLEET.connect user name and how the

special characters and characters inside this user name are correctly percent encoded:

https://csv.telematics.tomtom.com/extern?lang=de&account=***&username=Su%

DFanne%40work&password=***&apikey=***&action=geocodeAddress&outputformat=

json&freetext=Berlin

UTF-8 encoding

For more complex character encoding the UTF-8 encoding is needed as it contains nearly all

characters and special signs.

Here is another example. For example, to geocode the Polish town 'Łódź' you have to enable the

UTF-8 encoding in the request first by using the following extra parameter:

&useUTF8=true

All special characters and signs inside the URL must now be encoded using the UTF-8 format.

25

Here is how the URL should finally look like:

https://csv.business.tomtom.com/extern?lang=de&account=***&username=***&p

assword=***&apikey=***&action=geocodeAddress&outputformat=json&useUTF8=tr

ue&freetext=%C5%81%C3%B3d%C5%BA

Please note that the word Łódź has been converted to the following UTF-8 encoded string:

%C5%81%C3%B3d%C5%BA

Making SOAP requests

This section explains how to use SOAP (see Simple Object Access Protocol (SOAP) -

https://www.w3.org/TR/soap/) to issue requests to WEBFLEET.connect. In order to ensure

transmission security, it is required to use HTTPS to access the service via SSL.

WEBFLEET.connect supports the SOAP message protocol for issuing requests over an HTTPS

connection. The easiest way to use the SOAP interface with your application is to use a SOAP

toolkit appropriate for your programming platform. SOAP toolkits are available for most popular

languages and platforms.

The files describing the operations and the data types are available at

https://soap.telematics.tomtom.com (https://soap.telematics.tomtom.com). Most SOAP toolkits

support the automatic generation of routines and classes based on the description.

WEBFLEET.connect uses the MTOM (see SOAP Message Transmission Optimization Mechanism

(MTOM) - https://www.w3.org/TR/soap12-mtom/) extension to SOAP in order to provide an

optimised transmission of data. Although most modern SOAP toolkits support this extension, your

specific toolkit might need an additional support library to enable proper handling of MTOM.

Using .NET with the WEBFLEET.connect SOAP API

If you are using the .NET to integrate with WEBFLEET.connect we recommend to using C# as the

main programming language. If however you are forced to use Visual Basic this requires to apply

the additional steps described in Using WEBFLEET.connect SOAP with Visual Basic (page 336)

before importing the web service references into your development project.

Enabling the MTOM encoding support in .NET

.NET 3.5 (and higher) and the underlying Windows Communication Framework support SOAP

with the MTOM extension. If you create a default web service project in Visual studio, the MTOM

support is not automatically enabled for a new project. To enable it edit the app.config file in

your code project.

Rename every occurrence of the textMessageEncoding element to mtomMessageEncoding.

See "before" and "after" samples below.

Note: Only rename the element. The attributes and their values must not be removed. Do not

forget to close and re-open the project and possibly Visual Studio after this change, otherwise

Visual Studio will not recognise the changes.

The following code samples show when MTOM encoding is supported.

Code sample 3-2: Example: Before (MTOM encoding NOT supported):

<textMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"

messageVersion="Soap12" writeEncoding="utf-8">

26

<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"

maxNameTableCharCount="16384" />

</textMessageEncoding>

Code sample 3-3: Example - After (MTOM encoding supported):

<mtomMessageEncoding maxReadPoolSize="64" maxWritePoolSize="16"

messageVersion="Soap12" writeEncoding="utf-8">

<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384" maxBytesPerRead="4096"

maxNameTableCharCount="16384" />

</mtomMessageEncoding>

Using time zones with SOAP requests

With SOAP requests indicate a time zone known to the SOAP service in the general parameters

(gParm) timeZone element. All date time values returned by the output of a SOAP function call

will use the time zone thus indicated. Time zones known to the SOAP web service are enumerated

in KnownTimeZones (see WSDL (see TomTom SOAP services -

https://soap.business.tomtom.com/)). The general parameters (gParm) timeZone element does

not influence the interpretation of date time input data. This means, if a date time value is sent in a

SOAP request, the time zone information specified in this value will be used.

Getting started with SOAP requests

For making SOAP requests, you need a special tool.

We recommend using SoapUI (https://www.soapui.org (see https://www.soapui.org -

https://www.soapui.org)), which also offers a basic open source version.

Preconditions

▪ SoapUI is installed.

▪ Valid WSDL URL or file.

▪ Valid API key (page 17) and credentials.

Making a SOAP request with SoapUI

To make a SOAP request, do the following:

1. Create an empty project.

2. Right-click on the project

27

3. Click Add WSDL.

The Add WSDL dialogue opens.

4. Enter a valid WSDL URL that points to a WEBFLEET.connect SOAP service.

All available actions for this SOAP service are displayed.

Example:

https://soap.telematics.tomtom.com/v1.33/objectsAndPeopleReportingServi

ce?wsdl

5. Click to select an action, for example geocodeAddress.

6. Create a new SOAP request.

28

The request window opens.

7. Enter all required parameters.

8. Click the submit button.

Here is the result for the example SOAP request:

Request limits

The number of requests that can be issued is limited. If the number of requests executed exceeds

this limit, WEBFLEET.connect will return an error message and not process requests again until

there were no further requests within the limit monitoring interval. Limits are defined by a

maximum number of requests allowed in a certain time period. For more information about

request limits, read the chapter for the function you want to use.

