

Ca
La
Pe

Wh

Apri

ase S
aserf
erfor

hite Pa

il 2010

 Study
fiche
rman

aper

y: Im
e Sea
nce

mprov
arch

ving

2

Table of Contents

Background ... 3

The Case .. 3

Laserfiche Search Architecture .. 3

Findings and Solutions ... 4

Optimize Search Types .. 4

Adjust Customizations to Use the Most Efficient Search Syntax 5

Adjust Customizations to Display Results Efficiently ... 5

Defragment Search Index ... 6

Use Faster CPU for SQL Server .. 6

General Recommendations .. 8

Optimize Laserfiche Client Settings for Search Performance 8

Make Searches Faster ... 8

Have Results Returned Faster .. 9

Design a System for Best Search Performance ... 9

Perform Full-Text Indexing at a Convenient Time ... 9

Monitor the System for Heavy Load .. 10

Perform System Maintenance .. 10

Troubleshoot Hardware Performance if Necessary .. 11

Keep Up to Date on Laserfiche Releases and Fixes ... 11

3

Background
This paper describes steps taken to analyze and improve search performance
at a particular Laserfiche customer’s system. We present this summary in
order to help other customers who want to optimize their search performance.

The Case
The City of Boulder, Colorado uses Laserfiche to manage information
throughout various City departments. Laserfiche Solutions Group (LSG)
worked with reseller S. Corporation, Inc., to provide an analysis of the City of
Boulder’s existing Laserfiche system and make best practice recommendations
related to the performance of searching in the City’s Laserfiche system.

Research for this analysis was primarily gathered through:

• Search performance tests in the City’s production Laserfiche system.
• Performance counters and audit logs taken in the City’s production

Laserfiche system.
• Interviews with key staff members.
• Historical search performance tests conducted by the city’s IT staff.
• Search performance tests in a test environment at Laserfiche.

Laserfiche Search Architecture
Searching in Laserfiche has several elements, which are handled separately by
different server components. An understanding of these pieces and how they
relate informs our approach to troubleshooting and best practices.

• Laserfiche Full-Text Indexing and Search Service (LFFTS): An
independent service that handles full-text searching of the repository.

• SQL Search: Retrieves searches for things other than full-text, such as
names, dates, field values, annotation, tags, etc., that are stored in the
SQL database.

• Laserfiche Server The Laserfiche Server merges the search results,
determines which columns to display, and checks that the user has the
rights to the data being returned.

4

Findings and Solutions
Analysis of the City of Boulder’s system identified several factors that reduced
search performance. Addressing them improved the performance in a test
system and, when they were applied, in the City’s system. Note that some of
these solutions were specific to this installation; see the General
Recommendations section for a general guide to analyzing and improving
your own organization’s search performance.

Optimize Search Types
Laserfiche Audit Trail was used to monitor searches and their duration.
Searches using overly broad criteria may return more search results than
needed and slow down the results of others’ searches.

Searches can be directly specified by individual users or aided by integrations
and customizations that use Laserfiche advanced search syntax. As much as
possible, users should be trained to conduct effective searches, which will
help them better find the information they are looking for as well as reducing
the load on the system.

In the case of the City of Boulder, the following recommendations were made:

• When conducting a full-text search, specifying more detail will return
more relevant results in a shorter time.

Example: A full-text search for canyon in the City’s
repository returns more than 26,000 results. The full-
text search for canyon creek returns 2,117 results, a
full-text search for canyon creek master plan returns
74 results, and a search for fourmile canyon creek
master plan returns 54 results. The more specific the
search, the faster and more relevant the results.

• An “AND” Search will return fewer and more specific results than an
“OR” search.

Example: A Weblink search for Boulder Meadows
timed out because it was searching for all documents
that contained either word, whereas the user may have
intended to search for items that contained the exact
phrase “Boulder Meadows”.

• For field searches, searching within a single field is much faster than
searching across all fields.

Example: In the case of searching for documents
associated with a case number, searching in a

5

Laserfiche test system for an exact match within a
single field took 0.026 seconds, compared to 0.072
seconds for searching for an exact match across all
fields. Searching for a partial match across all fields
took even longer: 15.097 seconds.

Adjust Customizations to Use the Most Efficient Search Syntax
In addition to searches constructed by individual users, the City of Boulder
has several custom integrations that incorporate Laserfiche search syntax.
Integrations and other customizations should be adjusted to make sure their
code reflects the suggestions provided above. Any other operations that also
use advanced search syntax rather than the search interface should also
follow these recommendations.

Example 1: The City of Boulder has a hotkey integration that
allows users to access documents in the Laserfiche repository from
the LandLink case and parcel windows by querying the “case
number” or “parcel number” that are captured from the screen. As
much as possible, this integration should avoid using too many
“OR” operators in full-text searches. When searching using the
exact case number or parcel number, the queries should use the
simplest and fastest option—an exact match in a single field.

Adjust Customizations to Display Results Efficiently
Optimizing customizations to use the most efficient methods of retrieving and
displaying search results can improve the speed of many searches, thereby
potentially improving performance throughout the repository.

Example 2: The City also has a custom integration called ECM
Integrator, which is a server application designed to provide ECM
(Electronic Content Management) batch functionality. The ECM
integrator uses the Laserfiche Server Objects (LFSO) and
DocumentProccessor libraries. This integration can be adjusted to
use the following method:
LFSearchResultListing
GetSearchResultListing(LFSearchListingParams_SearchListingPar
ams, int RowsToPreload);

This code should help the searches run faster, since retrieving the
field data from the SearchResultListing object should be more
efficient than the previous method of accessing the LFFieldData
object in this context. It also specifies which columns to display,
which should reduce the time needed to display the search results.

6

Defragment Search Index
On September 6, 2009, the fragmentation level of the City of Boulder’s’s
production search catalog was 18.42%. After reindexing using the Quick
Reindex Utility, the fragmentation level dropped to zero. The average full-text
search duration (for search phrases selected for test purposes) dropped from
13 seconds to 5 seconds, showing performance 2.4 times as fast. The search
catalog will automatically undergo an optimization procedure if it reaches a
certain level of fragmentation, but you can also reindex manually if you are
finding that searching is slower than expected.

Use Faster CPU for SQL Server
During the full-text search in the City’s production environment, the SQL
Server %Processor Time per CPU was less than 50%; during the field search,
%Processor Time per CPU surged up to 100% for all eight CPU cores,
indicating a CPU bottleneck on the SQL Server during field searches.

The same measurement was also taken in the Laserfiche test environment,
where the SQL Server had equivalent hardware specifications for RAM and
disk compared to the City’s production SQL Server. The only difference
between the two SQL Servers was the speed and type of CPU.

 City’s Production SQL
Server

Laserfiche Test SQL
Server

Processor Name Intel Xeon E5405 Intel Xeon x5365
Frequency 2GHz 3GHz
of Processors 2 2
of Cores/processor 4 4

We see that on the Laserfiche test SQL Server, during the field search,
%Processor Time per CPU went up to 100% for only one CPU core, but
stayed below 65% for the other seven CPU cores. Compared to the City’s
production SQL Server, the Laserfiche test SQL Server was much less
constrained by the CPU bottleneck, thanks to the faster processors.

7

In fact, a comparison of search performance test results conducted in the
City’s production
system and the
Laserfiche test system
showed that field
searches were much
faster in the Laserfiche
test system than in the
City’s production
system; the average
field search duration
in the Laserfiche test
system was half of that
in the City’s
production system. It
is recommended that
the City use a higher
frequency CPU for
their SQL server.

8

General Recommendations
Laserfiche provided the following suggestions for a maintenance and
troubleshooting plan to improve search performance. These steps helped
identify the solutions described above, and have been generally shown to
improve the speed of searching in Laserfiche.

Optimize Laserfiche Client Settings for Search Performance
Laserfiche Client settings can be customized according to a variety of needs.
Of course, given that a particular organization or user may have multiple
needs, these may have to be balanced. If the goal is the fastest possible search
performance, the following settings are recommended, based on testing
conducted by Laserfiche:

Make Searches Faster
• Consider adjusting the Stop Words list in Indexing Properties in the

Laserfiche Administration Console to exclude frequently searched
words that do not add meaning when a full-text search is performed.

• In Laserfiche 8.1.1 or higher, optimization was introduced to make
searching in string fields significantly faster than before. Therefore, the
best practice is to define string fields to be shorter than 100 characters
whenever possible.

Example: In a Laserfiche test environment, exact-match
cross-field searches with short search phrases improved
from taking 0.11 seconds to only 0.02 seconds (an 80%
improvement) after the optimization.

• Disable the Fuzzy Search option by default, and enable it only when
necessary. A quick way to find out if anyone has this option enabled is
to execute the following SELECT query in the SQL database.
select * from trustee_attr where attr_name = '[SEARCH]Option'
and attr_val not like '0'

If you do use fuzzy search, note that the greater the level of fuzziness,
the more results will be returned, and the less likely they are to be
relevant to the query. Setting the fuzziness to a lower percentage or
smaller number of letters will return fewer, more relevant results that
can be displayed faster.

• Disable the Find partial matches when performing a basic search
option.

9

• Disable the Include Shortcuts in Search Results option. A quick way to
find out if anyone has this option enabled is to execute the following
SELECT query in the SQL database.
select * from trustee_attr where attr_name =
'[SEARCH]IncludeShortcuts'
and attr_val like 'Yes'

Have Results Returned Faster
• Give the Bypass Filter Expressions privilege to the Everyone Group if

no filter expression is used in the repository.

• Give Bypass Browse privilege to administrators who should have
access to all entries in the repository or already have the Manage Entry
Access privilege.

• Make entry access security configuration as simple as possible.

• Do not display resource-intensive columns. As of Laserfiche 8.1.1,
these are Path and Security. These settings are stored in the system as
user attributes and apply to both the thick and the Web clients. They
can be changed by the individual users or, in version 8.0 and above,
centrally managed by an administrator.

Design a System for Best Search Performance
It is a best practice to place the full-text search catalog on the fastest hard
drive possible, and separate from the drive where Laserfiche volumes are
stored.

The City of Boulder’s current system matches the recommended
configuration. They do plan to move toward iSCSI storage, an Internet
Protocal-based storage networking standard for linking data storage facilities,
in the future. In this case, it is recommended to keep the full-text search
catalog local to the Laserfiche Server and only move the volumes to the iSCSI
storage. Moving the volumes to non-local hard drives may affect the speed of
indexing, which will make it even more important to perform the indexing
after hours, as described below.

Perform Full-Text Indexing at a Convenient Time
Indexing can be a resource-intensive process. A best practice is to avoid full-
text indexing while searching, as much as possible. For example:

• Plan heavy scanning and document creation during non-production
hours.

• Scheduled indexing: Scheduled indexing is a new feature offered in
Laserfiche version 8.1.1 or higher. It allows administrators to schedule
indexing to exclude certain peak business hours.

10

Monitor the System for Heavy Load
You can monitor key performance counters on the servers and make sure they
do not deviate from the baseline.

• Check the Indexing Load: You can determine if indexing is the cause of
slow full-text searches by checking the index queue size in the
Laserfiche Administration Console as well as the server performance
counters related to indexing.

• Monitor Concurrent Search Load: A best practice is to periodically
monitor the number of concurrent searches using the Concurrent
Searches counter. If the number is frequently high, it may be time to
perform a search performance benchmark test with multiple concurrent
searches and analyze performance bottlenecks in such conditions.

• Monitor Load from Other Applications Hosted on the Same SQL
Server: If the production SQL server also hosts other databases than the
Laserfiche production database, activities in all the hosted databases
can be checked at random times in the Activity Monitor in SQL Server
Management Studio. If the load becomes too heavy, a dedicated SQL
server should be used to host the Laserfiche database.

• Check for Busy Network Traffic: Compare the network performance
counters to the Current Bandwidth counter for the Laserfiche, SQL,
and Web servers to see if there is a network bottleneck.

Currently, the City of Boulder is not showing symptoms of heavy load on
their system. As a best practice, it is recommended that they continue to
monitor the system, and take advantage of the scheduled indexing feature in
Laserfiche 8.1.1.

Perform System Maintenance
Monitoring and periodically defragmenting key components of the system can
improve search performance.

• Check SQL indexes: Rebuild if fragmentation is greater than 40%.
Reorganize if fragmentation is between 10% and 40%.

• Monitor key SQL tables in the Laserfiche database: Monitor tables
such as toc, doc, and propval. Rebuild if necessary.

• Monitor full-text search performance: After reindexing, the search
performance should be regularly monitored.

• Remove full-text search index fragmentation: As described above,
search index fragmentation was a factor in the search performance at the
City of Boulder. One tool available to perform this defragmentation is
the Laserfiche 8 Quick Reindex utility (QRcmd.exe), a free component

11

that can be installed with Laserfiche Server 8. It quickly regenerates the
search index files for a Laserfiche repository.

Troubleshoot Hardware Performance if Necessary
In most cases of reduced search performance, after checking the items
discussed above, we should have a good idea of the cause of the slowdown. If
necessary, we can troubleshoot on the hardware resources on the SQL Server
and Laserfiche Server. This step is not recommended at the beginning of the
investigation. Higher level issues, as listed above, should be exhausted first.
For example, if there is a missing index in the database, it may cause the SQL
Server to run full-table scans and appear to have an Input/Output (I/O)
bottleneck.

If it is suspected to be a SQL Server performance issue, there is a good
troubleshooting guide, Troubleshooting Performance Problems in SQL Server
2005, at http://technet.microsoft.com/en-us/library/cc966540.aspx. Most of
the same performance counters and analysis used in troubleshooting SQL
Server performance can also be applied to the identifying Laserfiche Server
performance bottlenecks.

We followed the steps described in the above reference, using a specific
search example (“canyon creek” as both a full-text and a partial match, all-
fields search) in the City’s production system. We tested the Laserfiche
Server, the SQL Server, and the I/O subsystem.

As described above, the conclusion of analysis was that there is a CPU
bottleneck on the SQL Server in the City’s production system. Search
performance can be improved by going with a higher frequency CPU on the
SQL Server. In the future, the City can continue to follow this process to
troubleshoot any additional hardware issues.

Keep Up to Date on Laserfiche Releases and Fixes
Laserfiche periodically releases Server hotfixes and version updates that
include performance optimizations. It is recommended to periodically check
the Laserfiche Support site at https://support.laserfiche.com for
announcements of product hotfixes and releases.

12

Case S
April 20

Author
Editor:
Technic

Laserfi
3545 Lo
Long B
U.S.A

Phone:
www.la

Laserfi
may be
tradem

Laserfi
purpos

Copyrig
All righ

tudy: Improving
010

s: Fei Wang and
 Tammy Kaehler
cal Editors: Jeff

che
ong Beach Blvd.

Beach, CA 90807

 +1.562.988.1688
aserfiche.com

che is a tradema
e trademarks of C

marks of their res

che makes every
ses only and Lase

ght © 2010 Lase
hts reserved

 Laserfiche Searc

 Snow Tempest
r
 Huang, Jeanie C

8

ark of Compulink
 Compulink Mana
spective owners.

y effort to ensure
erfiche makes no

rfiche

ch Performance

onner, and Gord

k Management C
agement Center,

e the accuracy of
o warranties, exp

on Wong

enter, Inc. Variou
 Inc. All other pro

f these contents
press or implied,

us product and s
oducts and servi

 at the time of pu
 as to the inform

 service names re
ce names mentio

ublication. They a
mation herein.

eferences herein
oned may be

 are for informatio

on

